Flow Control

1. Introduction
2. Elements of Flow Control

3. Importing Modules

Introduction

Last week, we learned the basics of individual instructions and that a program is just a
series of instructions. But programming's real strength isn't just running one instruction
after another!

Last week, we learned the basics of individual instructions and that a program is just a
series of instructions. But programming's real strength isn't just running one instruction
after another!

A program can decide to skip instructions, repeat them, or choose one of several
instructions to run! Flow control statements can decide which Python instructions to
execute under which conditions.

Last week, we learned the basics of individual instructions and that a program is just a
series of instructions. But programming's real strength isn't just running one instruction
after another!

A program can decide to skip instructions, repeat them, or choose one of several
instructions to run! Flow control statements can decide which Python instructions to

execute under which conditions.

These flow control statements directly correspond to the symbols in a flowchart!

source: https://automatetheboringstuff.com/2e/chapter2/

source: https://automatetheboringstuff.com/2e/chapter2/

But before you learn about flow control statements, you first need to learn how to
represent those yes and no options and understand how to write those branching points

as Python code. To that end, let's explore Boolean values,_ comparison operators,_ and

Boolean operators.

Boolean expressions

A boolean expression is an expression that is either True or False. The following examples
use the operator ==, which compares two operands and produces True if they are

equal and False otherwise:

A boolean expression is an expression that is either True or False. The following examples
use the operator ==, which compares two operands and produces True if they are
equal and False otherwise:

print(5 == 5)
print(5 == 6)

True
False

A boolean expression is an expression that is either True or False. The following examples
use the operator ==, which compares two operands and produces True if they are
equal and False otherwise:

print(5 == 5)
print(5 == 6)

True
False

True and False are special values that belong to the class bool which are Boolean
values; they are not strings:

A boolean expression is an expression that is either True or False. The following examples
use the operator ==, which compares two operands and produces True if they are
equal and False otherwise:

print(5 == 5)
print(5 == 6)

True
False

True and False are special values that belong to the class bool which are Boolean
values; they are not strings:

type(True), type(False)

(bool, bool)

The == operator is one of the comparison operators or relational operators; the others
are:

The == operator is one of the comparison operators or relational operators; the others
are:

Meaning
xl=y X is not equal toy
X >y X is greater than y
X<y x is less thany

X>=y X is greater than or equal to y

X <=y x is less than or equal to y

Xisy X is the same as 'y

xisnoty xis notthe same asy

These operators evaluate to True or False depending on the values you give them
and, therefore, can be used in the decision point as a condition statement.

These operators evaluate to True or False depending on the values you give them
and, therefore, can be used in the decision point as a condition statement.

print(42==42)

print(42==42.0) # It will compare its value!

print(42=="42") # int/float are always different from string
print(2!=3)

print('hello'=="Hello') # Python 1is case sensitive

print(42 < 100)
print(42 >= 100)

True
True
False
True
False
True
False

In [5]: display quiz(path+"bool.json", max_width=800)

Which of the following is a Boolean expression? Select all that apply.

3+4 3+44== 3==4 True "False"

Boolean (Logical) Operators

The three Boolean operators (and, or, and not) are used to operate on Boolean
values. Like comparison operators, they evaluate these expressions down to a Boolean
value. Let's explore these operators in detail.

The three Boolean operators (and, or, and not) are used to operate on Boolean

values. Like comparison operators, they evaluate these expressions down to a Boolean
value. Let's explore these operators in detail.

Expression Evaluates to . ..

True and True True

True and False False

False and True False

False and False False

Expression

Evaluates to ...

True or True

True

True or False

True

False or True

True

False or False

False

Expression Evaluatesto...

True or True True

True or False True

False or True True

False or False False

Expression Evaluatesto...

not True False

not False True

In [6]: print((4 < 5) and (5 < 6))
print((6 < 5) or (9 < 6))
print((1 == 2) or (2 == 2))
print(not (1==3) and (3==4))

True
False
True
False

print((4 < 5) and (5 < 6))
print((6 < 5) or (9 < 6))
print((1 == 2) or (2 == 2))
print(not (1==3) and (3==4))

True
False
True
False

The computer will evaluate the left expression first, and then it will evaluate the right
expression.

print((4 < 5) and (5 < 6))
print((6 < 5) or (9 < 6))
print((1 == 2) or (2 == 2))
print(not (1==3) and (3==4))

True
False
True
False

The computer will evaluate the left expression first, and then it will evaluate the right
expression.

The Boolean operators have an order of operations just like the math operators do. After
any math and comparison operators evaluate, Python evaluates the not operators first,

then the and operators, and then the or operators.

Arithmetic operators take precedence over logical operators. Python will always evaluate
the arithmetic operators first. Next comes the relational operators. Finally, the logical
operators are done last.

Arithmetic operators take precedence over logical operators. Python will always evaluate
the arithmetic operators first. Next comes the relational operators. Finally, the logical
operators are done last.

Level Category Operators

7 (high) exponent *

6 multiplication *, /, //, %

5 addition +, -

4 relational ==, l=, <=, >=, >, <
3 logical not

2 logical and

1 (low) logical or

In [7]: display quiz(path+"logical.json", max_width=800)

What is the correct Python expression for checking to see if a number stored in a

variable x is between 0 and 5.

O0<x<5 x>0and <5 x>0orx<5 x>0andx <5

Elements of Flow Control

It can be shown that all programs could be written using three forms of control—namely,
sequential execution, the selection statement and the repetition statement. This is the
idea behind structured programming.

It can be shown that all programs could be written using three forms of control—namely,
sequential execution, the selection statement and the repetition statement. This is the
idea behind structured programming.

Flow control statements often start with a part called the condition and are always
followed by a block of code called the clause or body.

It can be shown that all programs could be written using three forms of control—namely,
sequential execution, the selection statement and the repetition statement. This is the

idea behind structured programming.

Flow control statements often start with a part called the condition and are always
followed by a block of code called the clause or body.

The Boolean expressions you've seen so far could all be considered conditions, which are
the same thing as expressions; the condition is just a more specific name in the context of
flow control statements!

Blocks of Code

Lines of Python code can be grouped together in blocks. You can tell when a block begins
and ends from the indentation of the lines of code. There are three rules for blocks.

1. Blocks begin when the indentation increases.

Lines of Python code can be grouped together in blocks. You can tell when a block begins
and ends from the indentation of the lines of code. There are three rules for blocks.

1. Blocks begin when the indentation increases.

2. Blocks can contain other blocks.
3. Blocks end when the indentation decreases to zero or to a containing block's

indentation.

Blocks are easier to understand by looking at some indented code, so let's find the blocks
in part of a small game program, shown here:

Blocks are easier to understand by looking at some indented code, so let's find the blocks
in part of a small game program, shown here:

name = 'Mary'’
password = 'swordfish'
if name == 'Mary':
print('Hello, Mary"')
if password == 'swordfish':
print('Access granted.')
else:
print('Wrong password."')

Hello, Mary
Access granted.

Blocks are easier to understand by looking at some indented code, so let's find the blocks
in part of a small game program, shown here:

name = 'Mary'’
password = 'swordfish'
if name == 'Mary':
print(‘'Hello, Mary')
if password == 'swordfish':
print('Access granted.')
else:
print('Wrong password."')

Hello, Mary
Access granted.

You can view the execution of this program at https://autbor.com/blocks/. The first block
of code starts at the line print('Hello, Mary') and contains all the lines after it.

Inside this block is another block, which has only a single line in it: print('Access
Granted. ') . The third block is also one line long: print('Wrong password."') .

An IndentationError occurs if you have more than one statement in a block and those
statements do not have the same indentation:

An IndentationError occurs if you have more than one statement in a block and those
statements do not have the same indentation:

name = 'Mary'’
password = 'swordfish'
if name == 'Mary':
print('Hello, Mary')
if password == 'swordfish':
print('Access granted.')
else:
print('Wrong password."')

File "C:\Users\adm\AppData\Local\Temp\ipykernel 35736\140440185.py",
line 5
if password == 'swordfish':

IndentationError: unexpected indent

In [10]: display quiz(path+"block.json", max_width=800)

How many lines of code (statement) can appear in the indented code block below

the if and else lines?

One or more, and each must contain the same

Zero or more.
number.

One or more. Just one.

Conditional execution

The control statement affords us a mechanism for jumping from one part of a program to
another. This enables what is called control structures.

The control statement affords us a mechanism for jumping from one part of a program to
another. This enables what is called control structures.

One example of this is the if-statement. An if statement's body (that is, the block

following the if statement) will execute if the statement’s condition is True . The body
is skipped if the condition is False.

The control statement affords us a mechanism for jumping from one part of a program to
another. This enables what is called control structures.

One example of this is the if-statement. An if statement's body (that is, the block
following the if statement) will execute if the statement’s condition is True . The body
is skipped if the condition is False.

In Python, an if statement consists of the following:

The if keyword

A condition (that is, an expression that evaluates to True or False)

A colon

Starting on the next line, an indented block of code (called the if body)

The boolean expression after the if statement is called the condition. We end the if

statement with a colon character (:) and the line(s) after the if statement are indented.

If the logical condition is true, then the indented statement gets executed. If the logical
condition is false, the indented statement is skipped.

The boolean expression after the if statement is called the condition. We end the if

statement with a colon character (:) and the line(s) after the if statement are indented.

If the logical condition is true, then the indented statement gets executed. If the logical
condition is false, the indented statement is skipped.

name = 'Mary'

if name == 'Alice':
print('Hi, Alice.')

name == "Alice’ True—®= print('Hi, Alice.')

False

source: https://automatetheboringstuff.com/2e/chapter2/

A second form of the if statement is alternative execution, in which there are two

possibilities and the condition determines which one gets executed. The syntax looks like
this:

A second form of the if statement is alternative execution, in which there are two

possibilities and the condition determines which one gets executed. The syntax looks like
this:

if name == 'Alice’':
print('Hi, Alice.')

else:
print('Hello, stranger.')

Hello, stranger.

A second form of the if statement is alternative execution, in which there are two

possibilities and the condition determines which one gets executed. The syntax looks like
this:

if name == 'Alice':
print('Hi, Alice.')

else:
print('Hello, stranger.')

Hello, stranger.

You can also write the above code in one line using the ternary conditional operator:

A second form of the if statement is alternative execution, in which there are two

possibilities and the condition determines which one gets executed. The syntax looks like
this:

if name == 'Alice':
print('Hi, Alice.')

else:
print('Hello, stranger.')

Hello, stranger.

You can also write the above code in one line using the ternary conditional operator:

print('Hi, Alice.') if name == 'Alice' else print('Hello, stranger.') # Note

Hello, stranger.

Trug —— print('Hi, Alice.')

False

I = print('Hello, stranger.')

End

source: https://automatetheboringstuff.com/2e/chapter2/

Since the condition must either be true or false, exactly one of the alternatives will be
executed. The alternatives are called branches, because they are branches in the flow of
execution.

Since the condition must either be true or false, exactly one of the alternatives will be
executed. The alternatives are called branches, because they are branches in the flow of
execution.

Sometimes there are more than two possibilities and we need more than two branches.
One way to express a computation like that is a chained conditional:

Since the condition must either be true or false, exactly one of the alternatives will be
executed. The alternatives are called branches, because they are branches in the flow of

execution.

Sometimes there are more than two possibilities and we need more than two branches.
One way to express a computation like that is a chained conditional:

name = 'Carol’
age = 3000
if name == 'Alice':

print('Hi, Alice.')
elif age < 12:
print('You are not Alice, kidd.")

else:
print('You are neither Alice nor a little kid."')

You are neither Alice nor a little kid.

Since the condition must either be true or false, exactly one of the alternatives will be
executed. The alternatives are called branches, because they are branches in the flow of
execution.

Sometimes there are more than two possibilities and we need more than two branches.
One way to express a computation like that is a chained conditional:

name = 'Carol’
age = 3000
if name == 'Alice':

print('Hi, Alice.')
elif age < 12:
print('You are not Alice, kidd.")
else:
print('You are neither Alice nor a little kid."')

You are neither Alice nor a little kid.

You can view the execution of this program at https://autbor.com/littlekid/. In plain

English, this type of flow control structure would be “If the first condition is true, do this.

Else, if the second condition is true, do that.

name == "Alice’ True—] print('Hi, Alice.') —

False

¢—True—b print('You are not Alice, kiddo.') F——

False

print('You are neither Alice
End =

nor a little kid.")

source: https://automatetheboringstuff.com/2e/chapter2/

In [14]: display quiz(path+"conditions.json", max_width=800)

What will the following code printifx =3,y =5, and z = 27?

Exercise 1. Write a program that prompts the
user to enter a row and column (each

between 0 and 7) corresponding to an
chessboard square, then prints "black” or
"white” depending on the square’s color; if
either input is outside the 0—/ range, it prints
"out of board”

Exercise 1. Write a program that prompts the
user to enter a row and column (each

between 0 and 7) corresponding to an
chessboard square, then prints "black” or
"white” depending on the square’s color; if
either input is outside the 0—/ range, it prints
"out of board”

N
w
w

E"‘E o
@ -
o

.

oo W E-B-
=

N o o AW N =E O
oom e
-l WO
B-E_ N

3

o W M-

=0
Sl

source: https://inventwithpython.com/pythongently/images/image011.png

In []: row = int(input("Enter row :"))
column = int(input("Enter column :"))
If the column and row 1s out of bounds, print out of board:
if column __ or column ____ or row ___ or row ___

print('out of board')
If the even/oddness of the column and row match, print 'white’:

column % == row % _:
print('white")
If they don't match, then print 'black':

print(‘'black")

Loops and Iterations

You can make a block of code execute over and over again using a while statement.
The code in a while body will be executed as long as the while statement’s condition
iIs True. A while statement always consists of the following:

You can make a block of code execute over and over again using a while statement.
The code in a while body will be executed as long as the while statement’s condition
iIs True. A while statement always consists of the following:

e The while keyword
e A condition and a colon
e Starting on the next line, an indented block of code (called the while body)

You can make a block of code execute over and over again using a while statement.

The code in a while body will be executed as long as the while statement’s condition

iIs True. A while statement always consists of the following:

e The while keyword
e A condition and a colon
e Starting on the next line, an indented block of code (called the while body)

spam = ©

while spam < 5:
print(‘'Hello, world.")
spam += 1 # equivalent to spam

Hello,
Hello,
Hello,
Hello,
Hello,

world.
world.
world.
world.
world.

spam + 1

You can make a block of code execute over and over again using a while statement.
The code in a while body will be executed as long as the while statement’s condition
iIs True. A while statement always consists of the following:

e The while keyword
e A condition and a colon
e Starting on the next line, an indented block of code (called the while body)

spam = ©
while spam < 5:
print(‘'Hello, world.")
spam += 1 # equivalent to spam = spam + 1

Hello, world.
Hello, world.
Hello, world.
Hello, world.
Hello, world.

Augmented assignments abbreviate assignment expressions in which the same variable
name appears on the left and right of the assignment’'s = as above

True *

spam < 5 print('Hello, world.")

:

spam = spam + 1

False

End

source: https://automatetheboringstuff.com/2e/chapter2/

More formally, here is the flow of execution for a while statement:

1. Evaluate the condition, yielding True or False.

2. If the condition is false, exit the while statement and continue execution at the
next statement.

3. If the condition is true, execute the body and then go back to step 1.

More formally, here is the flow of execution for a while statement:

1. Evaluate the condition, yielding True or False.

2. If the condition is false, exit the while statement and continue execution at the
next statement.

3. If the condition is true, execute the body and then go back to step 1.

In the while loop, the condition is always checked at the start of each iteration (that is,
each time the loop is executed). If the condition is True, then the body is executed, and

afterward, the condition is checked again. The first time the condition is found to be
False, the while body is skipped.

A common programming pattern is that we can run the program as long as the user
wants by putting most of the program in a while loop. We'll define a quit value to
decide when to leave:

A common programming pattern is that we can run the program as long as the user
wants by putting most of the program in a while loop. We'll define a quit value to

decide when to leave;

prompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "
message = ""
while message != 'quit':
message = input(prompt)
print(message)

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. hi
hi

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. quit
quit

A common programming pattern is that we can run the program as long as the user
wants by putting most of the program in a while loop. We'll define a quit value to

decide when to leave;

prompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "
message = ""
while message != 'quit':
message = input(prompt)
print(message)

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. hi
hi

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. quit
quit

We first set up a variable message to keep track of whatever value the user enters. We
define message as an empty string, "", so Python has something to check at the first
time.

Note that Python considers @, None, empty string, and empty container as False and
all other things are True'!

Note that Python considers @, None, empty string, and empty container as False and
all other things are True'!

bool(""), bool(®), bool(None), bool(prompt), bool(12)

(False, False, False, True, True)

Using break to Exit a Loop

The above program works well, except that it prints the word 'quit' as if it were an actual
message. In fact, there is a shortcut to getting the program execution to break out of a
while loop’s body early. If the execution reaches a break statement, it immediately

exits the while loop’s body !

The above program works well, except that it prints the word 'quit' as if it were an actual
message. In fact, there is a shortcut to getting the program execution to break out of a
while loop’s body early. If the execution reaches a break statement, it immediately
exits the while loop’s body !

prompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "

message = ""

while True:

message = input(prompt)

if message == 'quit':
break

else:
print(message)

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. hi
hi

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. quit

The above program works well, except that it prints the word 'quit' as if it were an actual
message. In fact, there is a shortcut to getting the program execution to break out of a
while loop’s body early. If the execution reaches a break statement, it immediately
exits the while loop’s body !

prompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "

message = ""

while True:

message = input(prompt)

if message == 'quit':
break

else:
print(message)

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. hi
hi

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. quit

The fourth line creates an infinite loop; it is a while loop whose condition is always
True . After the program execution enters this loop, it will exit the loop only when a
break statement is executed.

continue Statemet

Rather than breaking out of a loop entirely without executing the rest of its code, you can
use the continue statement to return to the beginning of the loop based on the result
of a conditional test. For example, consider a loop that counts from 1 to 10 but prints only

the odd numbers in that range:

Rather than breaking out of a loop entirely without executing the rest of its code, you can
use the continue statement to return to the beginning of the loop based on the result
of a conditional test. For example, consider a loop that counts from 1 to 10 but prints only

the odd numbers in that range:

current_number = 0
while current_number < 10:
current_number += 1
if current_number % 2 == 0:
continue

else:
print(current_number, end="' ")

135729

Rather than breaking out of a loop entirely without executing the rest of its code, you can
use the continue statement to return to the beginning of the loop based on the result
of a conditional test. For example, consider a loop that counts from 1 to 10 but prints only

the odd numbers in that range:

current_number = 0
while current_number < 10:
current_number += 1
if current_number % 2 == 0:
continue

else:
print(current_number, end="' ")

135729

Note that the built-in function print() displays its argument(s), then moves the cursor
to the next line. You can change this behavior with the argument end . We used one
space (' '), so each call to print displays the character’s value followed by one space!

In [21]: display_quiz(path+"while.json", max_width=800)

The following code contains an infinite loop. Which is the best explanation for why
the loop does not terminate?

You cannot compare n to 0 in while loop. You must In the while loop body, we must set n to False, and
compare it to another variable. this code does not do that.
answer starts at 1 and is incremented by n each n starts at 10 and is incremented by 1 each time
time, so it will always be positive through the loop, so it will always be positive

“TRUTHY" and "FALSY" Values

Let us delve into the following program:

Let us delve into the following program:

name =
while not name:
print('Enter your name:')
name = input()

print('How many guests will you have?"')
numOfGuests = int(input())

if numOfGuests:
print('Be sure to have enough room for all your guests.')

print('Done')

Enter your name:

phonchi

How many guests will you have?

3

Be sure to have enough room for all your guests.
Done

Let us delve into the following program:

name =
while not name:
print('Enter your name:')
name = input()

print('How many guests will you have?"')
numOfGuests = int(input())

if numOfGuests:
print('Be sure to have enough room for all your guests.')

print('Done')

Enter your name:

phonchi

How many guests will you have?

3

Be sure to have enough room for all your guests.
Done

You can view the execution of this program at https://autbor.com/howmanyguests/.

for Loops and the range() Function

The while loop keeps looping while when its condition is True, but what if you want
to execute a block of code only a certain number of times? You can do this with a for
loop statement and the range() function.

The while loop keeps looping while when its condition is True, but what if you want
to execute a block of code only a certain number of times? You can do this with a for
loop statement and the range() function.

A for statement looks something like for i in range(5) : and includes the following:

e The for keyword
e A variable name

e The in keyword

The while loop keeps looping while when its condition is True, but what if you want
to execute a block of code only a certain number of times? You can do this with a for
loop statement and the range() function.

A for statement looks something like for i in range(5) : and includes the following:

e The for keyword
e A variable name

e The in keyword

e A call to the range() funtion with up to three integers passed to it (The for
statement can iterate over a sequence item by item!)
e A colon

e Starting on the next line, an indented block of code (called the for body)

Let's create a new program to help you see a for loop in action.

Let's create a new program to help you see a for loop in action.

print('My name is')
for i in range(5):

print('Jimmy Five Times (' + str(i) + ')")

My name is
Jimmy Five
Jimmy Five
Jimmy Five
Jimmy Five
Jimmy Five

Times
Times
Times
Times
Times

(0)
(1)
(2)
(3)
(4)

Let's create a new program to help you see a for loop in action.

print('My name is')
for i in range(5):
print('Jimmy Five Times (' + str(i) + ')")

My name is

Jimmy Five Times (0)
Jimmy Five Times (1)
Jimmy Five Times (2)
Jimmy Five Times (3)
Jimmy Five Times (4)

You can view the execution of this program at https://autbor.com/fivetimesfor/.

You can actually use a while loop to do the same thing as a for loop; for loops are
just more concise.

You can actually use a while loop to do the same thing as a for loop; for loops are
just more concise.

print('My name is')

1 =20

while i < 5:

print('Jimmy Five Times (' + str(i) + ')")

i=1+1

My name is
Jimmy Five
Jimmy Five
Jimmy Five
Jimmy Five
Jimmy Five

Times
Times
Times
Times
Times

(@)
(1)
(2)
(3)
(4)

The Starting, Stopping, and Stepping Arguments to range()

Some functions can be called with multiple arguments separated by a comma, and
range() is one of them. This lets you change the integer passed to range() to follow

any sequence of integers, including starting at a number other than zero.

Some functions can be called with multiple arguments separated by a comma, and
range() is one of them. This lets you change the integer passed to range() to follow
any sequence of integers, including starting at a number other than zero.

for i in range(12, 16):
print(i)

12
13
14
15

Some functions can be called with multiple arguments separated by a comma, and
range() is one of them. This lets you change the integer passed to range() to follow
any sequence of integers, including starting at a number other than zero.

for i in range(12, 16):
print(i)

12
13
14
15

The range() function can also be called with three arguments. The first two arguments
will be the start and stop values, and the third will be the step argument.

In [26]: for i in range(@, 10, 2):
print(i)

oo ph~NO

for i in range(9, 10, 2):
print(i)

oo ph~NO

You can even use a negative number for the step argument to make the for loop count
down instead of up.

for i in range(9, 10, 2):
print(i)

oo ph~NO

You can even use a negative number for the step argument to make the for loop count
down instead of up.

for i in range(5, -1, -1):
print(i)

O Rr NWP WU

In [28]: display_quiz(path+"for.json", max_width=800)

How many times is the word HELLO printed by the following statements?

Error, the for statement needs to use the range()
function.

10 11

Exercise 2: Write a script that displays the
following triangle patterns. Use for loops to

generate the patterns.

Hint: Try to use nested loops and use the outer loop to display each row while the inner
loop to display each column

In []: for row in range(__,):
for column in range(__,):
print('*', end="")
print()

Importing Modules

All Python programs can call a basic set of functions called built-in functions, including
the print(), input(), len() and range() functions you've seen before.

All Python programs can call a basic set of functions called built-in functions, including
the print(), input(), len() and range() functions you've seen before.

Python also comes with a set of modules called the standard library. Each module is a

Python program that contains a related group of functions that can be embedded in your
programs.

All Python programs can call a basic set of functions called built-in functions, including
the print(), input(), len() and range() functions you've seen before.

Python also comes with a set of modules called the standard library. Each module is a

Python program that contains a related group of functions that can be embedded in your
programs.

For example, the math module has mathematics-related functions. The random module
has random number-related functions, and so on.

Before you can use the functions in a module, you must import the module with an
import statement. In code, an import statement consists of the following:

e The import keyword

Before you can use the functions in a module, you must import the module with an
import statement. In code, an import statement consists of the following:

e The import keyword

e The name of the module
e Optionally, more module names, as long as they are separated by commas

Once you import a module, you can use all the cool functions of that module. Let's give it
a try with the random module, which will give us access to the random.randint()

function.

Once you import a module, you can use all the cool functions of that module. Let's give it
a try with the random module, which will give us access to the random.randint()
function.

import random
for i in range(5):
print(random.randint(1, 10))

NE N0 W

Once you import a module, you can use all the cool functions of that module. Let's give it
a try with the random module, which will give us access to the random.randint()
function.

import random
for i in range(5):
print(random.randint(1, 10))

NE N0 W

You can view the execution of this program at https://autbor.com/printrandom/. The
random.randint() function call evaluates to a random integer value between the two
integers that you pass it.

Once you import a module, you can use all the cool functions of that module. Let's give it
a try with the random module, which will give us access to the random.randint()
function.

import random
for i in range(5):
print(random.randint(1, 10))

NE N0 W

You can view the execution of this program at https://autbor.com/printrandom/. The
random.randint() function call evaluates to a random integer value between the two
integers that you pass it.

Since randint() isinthe random module, you must first type random. in front of the
function name to tell Python to look for this function inside the random module.

Ending a Program Early with the sys.exit () Function

The last flow control concept to cover is how to terminate the program. Programs always
terminate if the program execution reaches the bottom of the instructions.

The last flow control concept to cover is how to terminate the program. Programs always
terminate if the program execution reaches the bottom of the instructions.

However, you can cause the program to terminate before the last instruction by calling
the sys.exit() . Since this function is in the sys module, you have to import sys
before your program can use it.

The last flow control concept to cover is how to terminate the program. Programs always
terminate if the program execution reaches the bottom of the instructions.

However, you can cause the program to terminate before the last instruction by calling
the sys.exit() . Since this function is in the sys module, you have to import sys
before your program can use it.

%%writefile exit.py
import sys
while True:

print('Type exit to exit."')
response = input()

if response == 'exit':
sys.exit()
print('You typed ' + response + '."')

print('This line will not be printed')

Overwriting exit.py

%run exit.py

Type exit to exit.

hi
You typed hi.

Type exit to exit.

exit

%run exit.py

Type exit to exit.
hi

You typed hi.

Type exit to exit.
exit

By using expressions that evaluate to True or False (also called conditions), you can

write programs that make decisions on what code to execute and what code to skip. You
can also execute code over and over again in a loop while a certain condition evaluates to
True.

%run exit.py

Type exit to exit.
hi

You typed hi.

Type exit to exit.
exit

By using expressions that evaluate to True or False (also called conditions), you can

write programs that make decisions on what code to execute and what code to skip. You
can also execute code over and over again in a loop while a certain condition evaluates to
True.

These flow control statements will let you write more intelligent programs. You can also
use another type of flow control by writing your own functions, which is the topic of the
next chapter.

In [32]: from jupytercards import display flashcards
fpath= "https://raw.githubusercontent.com/phonchi/nsysu-mathl06A/refs/heads/m
display flashcards(fpath + 'ch2.json')

Flow control statements

Next

	Introduction
	Boolean expressions
	Boolean operators

	Elements of flow control
	Blocks of code
	Conditional execution
	Loops and iterations
	Using break to exit a loop
	Truthy and Falsy values

	for loops and the range function
	The start, stop and step arguments of range()

	Importing Modules
	Ending program early with the sys.exit() function

